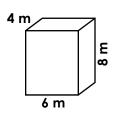

Name: _____

Surface Area

Surface area is the total area of all faces of a figure. To find the surface area of a rectangular prism, imagine it unfolded into six rectangles. Find the area of each rectangle and add them together. The sum is the surface area of the rectangular prism.

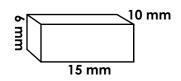


surface area = 320 cm^2

surface area =

Find the surface area of the following figures.

area of left side: _____ **x** ____ = ____


area of top: _____ **x** ____ = ____

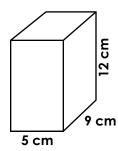
area of front: _____ **x** ____ = ____

area of bottom: _____ **x** ____ = ____

area of right side: _____ **x** ____ = ____

area of back: _____ x ___ = ____ surface area = ____

area of left side: _____ **x** ____ = ____


area of top: _____ **x** ____ = ____

area of front: _____ **x** ____ = ____

area of bottom: _____ **x** ____ = ____

area of right side: _____ **x** ____ = ____

area of back: _____ x ____ = ____ surface area = _____

area of left side: _____ x ____ = ____

area of top: _____ **x** ____ = ____

area of front: _____ **x** ____ = ____

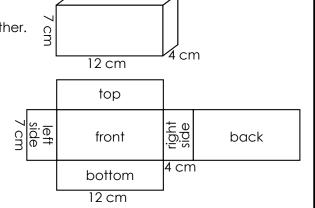
area of bottom: _____ **x** ____ = ____

area of right side: _____ **x** ____ = ____

.....

area of back:

ANSWER KEY


Surface Area

Surface area is the total area of all faces of a figure. To find the surface area of a rectangular prism, imagine it unfolded into six rectangles. Find the area of each rectangle and add them together. The sum is the surface area of the rectangular prism.

area of left side: $4 \text{ cm x 7 cm} = 28 \text{ cm}^2$ area of top: $4 \text{ cm x 12 cm} = 48 \text{ cm}^2$ area of front: $7 \text{ cm x 12 cm} = 84 \text{ cm}^2$ area of bottom: $4 \text{ cm x 12 cm} = 48 \text{ cm}^2$

area of right side: $4 \text{ cm} \times 7 \text{ cm} = 28 \text{ cm}^2$ area of back: $7 \text{ cm} \times 12 \text{ cm} = +84 \text{ cm}^2$

surface area = 320 cm^2

Find the surface area of the following figures.

area of left side: $8 \text{ m} \times 4 \text{ m} = 32 \text{ m}^2$

area of top: $\frac{4 \text{ m}}{x} = \frac{24 \text{ m}^2}{x}$

area of front: $\frac{6 \text{ m}}{\text{ m}} \times \frac{8 \text{ m}}{\text{ m}} = \frac{48 \text{ m}^2}{\text{ m}^2}$

area of bottom: $\frac{4 \text{ m}}{x} \times \frac{6 \text{ m}}{z} = \frac{24 \text{ m}^2}{z}$

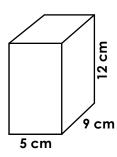
area of right side: $8 \text{ m} \times 4 \text{ m} = 32 \text{ m}^2$

area of back: $6 \text{ m} \times 8 \text{ m} = 48 \text{ m}^2$

surface area = $\frac{208 \text{ m}^2}{}$

15 mm

area of left side: $\frac{6 \text{ mm}}{x} \times \frac{10 \text{ mm}}{a} = \frac{60 \text{ mm}^2}{a}$


area of top: $15 \text{ mm}_{x} 10 \text{ mm} = 150 \text{ mm}^{2}$

area of front: $15 \text{ mm}_{x} 6 \text{ mm} = 90 \text{ mm}^{2}$

area of bottom: $15 \text{ mm}_{x} 10 \text{ mm} = 150 \text{ mm}^{2}$

area of right side: $\frac{6 \text{ mm}}{x} \times \frac{10 \text{ mm}}{x} = \frac{60 \text{ mm}^2}{x}$

area of back: $15 \text{ mm} \times 6 \text{ mm} = 90 \text{ mm}^2$ surface area = 600 mm^2

area of left side: $\frac{9 \text{ cm}}{x} \frac{12 \text{ cm}}{108 \text{ cm}^2}$

area of top: $\frac{9 \text{ cm}}{x} = \frac{45 \text{ cm}^2}{}$

area of front: $5 \text{ cm} \times 12 \text{ cm} = 60 \text{ cm}^2$

area of bottom: $9 \text{ cm} \times 5 \text{ cm} = 45 \text{ cm}^2$

area of right side: $\frac{9 \text{ cm}}{x} \times \frac{12 \text{ cm}}{x} = \frac{108 \text{ cm}^2}{x}$

area of back: $5 \text{ cm} \times 12 \text{ cm} = 60 \text{ cm}^2$

surface area = $\frac{426 \text{ cm}^2}{}$