Coordinate Grid Area: Triangles

Plot, label, and connect the vertices to make a triangle. Using absolute value, find the lengths of the sides that make a right angle (the legs). Then find the triangle's area.

1. A(-3, 3), B(-3, -5), C(7, -5)

area = _____ units²

Preview

Please log in to download the printable version of this worksheet.

area = _____ units²

3. *X*(-8, 2), *Y*(-2, 2), *Z*(-8, -3)

area = _____ units²

Coordinate Grid Area: Triangles

area = _____ units²

Preview

Please log in to download the printable version of this worksheet.

area = _____ units²

ANSWER KEY

Coordinate Grid Area: Triangles

Plot, label, and connect the vertices to make a triangle. Using absolute value, find the lengths of the sides that make a right angle (the legs). Then find the triangle's area.

1. A(-3, 3), B(-3, -5), C(7, -5)

area = 15 units²

ANSWER KEY

Coordinate Grid Area: Triangles

4. R(7, -3), S(7, -9), T(0, -9)

Please log in to download the printable version of this worksheet.

 $area = \underline{\qquad 66} \quad units^2$

